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Introduction
Consider the following regressionmodel for i = 1, . . . , n:

yi = f (xi) + ϵi
(ϵ1, . . . , ϵn)

⊤ ∼ Nn(0,Ψ
−1)

(1)

where yi ∈ R, x ∈ X , and f ∈ F . Let F be a reproducing
kernel Hilbert space (RKHS) with kernel hλ : X ×X → R.
The Fisher information for f evaluated at x and x′ is

I
(
f (x), f (x′)

)
=

n∑
k=1

n∑
l=1

Ψk,lhλ(x, xk)hλ(x
′, xl). (2)

The I-prior

The entropy maximising prior distribution for f , sub-
ject to constraints, is

f =
(
f (x1), . . . , f (xn)

)⊤ ∼ Nn

(
f0, I[f ]

)
.

Of interest are

• the posterior distribution for the regression function

p(f |y) = p(y|f)p(f)∫
p(y|f)p(f) dy

; and

• the posterior predictive distribution given new data

p(ynew|y) =
∫

p(ynew|fnew,y)p(fnew|y) dfnew.

Estimation
Model parameters (error precisionΨ, RKHS scale param-
eters λ, and any others) may be estimated via

• Maximummarginal likelihood, a.k.a. empirical Bayes;
• Expectation-maximisation (EM) algorithm; or
• Markov chain Monte Carlo (MCMC) methods.

Under the normal model (1), the posterior for y, given
some x and model parameters, is normal with mean

ŷ(x) = f0(x) + h⊤
λ (x)ΨHλ

(
HλΨHλ + Ψ−1

)−1(
y − f0(x)

)
(3)and variance

σ̂2(x) = h⊤
λ (x)

(
HλΨHλ + Ψ−1

)−1
hλ(x) + vx,

where vx is some prior variance component.
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Figure 1: Sample paths from the fractional Brownianmotion RKHS under an I-prior (left) and the posterior (right). There is somewhat controlled
behaviour at the boundaries (compared to Gaussian process priors, say). Fewer information in this region pulls the function estimate towards
the prior mean. The 95% credibility interval for posterior estimates of y are shaded grey.

Computational Hurdle
Computational complexity is dominated by the n×nma-
trix inversion in (3), which is O(n3). Suppose that Hλ =
QQ⊤, with Q an n × q matrix, is a valid low-rank decom-
position. Then(
HλΨHλ + Ψ−1

)−1
= Ψ− ΨQ

(
(Q⊤ΨQ)−1 +Q⊤ΨQ

)−1
Q⊤Ψ

is a much cheaper O(nq2) operation, especially if q << n.
Exact and approximated methods (such as the Nyström
method) for low-rankmatrixmanipulations are explored.

I-prior advantages

• Unifies methodology for various regressions
models, including:
• Multidimensional smoothing.
• Random effects/multilevel models.
• Longitudinal models.
• Functional linear/smooth regression.

• Straightforward estimation and inference.
• Often gives better prediction for new data.

Categorical Responses
Suppose now that each yi ∈ {1, . . . ,m} and that

yi ∼ Cat(pi1, . . . , pim)

with probability mass function

p(yi) =

m∏
j=1

p
yij
ij , yij = [yi = j],

satisfying pij > 0 and
∑

j pij = 1, ∀j ∈ {1, . . . ,m}. In the
spirit of generalised linear models, take

E[yij] = pij = g−1
(
fj(xi)

)
with some link function g : [0, 1] → R and an I-prior on fj.

Now, the marginal, on which the posterior depends,

p(y) =

∫ n∏
i=1

m∏
j=1

[{
g−1

(
fj(xi)

)}[yi=j]

· Nn(f0j, I[fj]) dfj
]
,

cannot be found in closed form.

Variational Approximation
An approximation q(f) to the true posterior density p(f |y)
is sought, with q chosen tominimise the Kullback-Leibler
divergence (under certain restrictions), i.e.

KL(q||p) = −
∫

log
p(f |y)
q(f)

q(f) df .

By working in a fully Bayesian setting, we append model
parameters to f and employ the variational method. The
result is an iterative algorithm similar to the EM.

As this variational-EM works harmoniously with expo-
nential family distributions, the probit link is preferred.
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Figure 2: A toy example of three-class classification using I-priors
and the fBm-0.5 kernel over a two-dimensional predictor. Points
indicate realisations, while background colours denote predicted
classes. Several predicted probabilities for new data are shown too.

Variable Selection for Linear Models
Model selection can easily be done by comparing likeli-
hoods (empirical Bayes factors). However, with p vari-
ables to select, the 2p comparisons could prove in-
tractable with large p.

For linear models of the form

(y1, . . . , yn)
⊤ ∼ Nn

(
β01n +

p∑
j=1

βjXj,Ψ
−1
)
,

the prior
(β1, . . . , βp)

⊤ ∼ Np(0,ΛX
⊤ΨXΛ)

is an equivalent I-prior representation of (1) in the fea-
ture space of β under the linear kernel.

Gibbs-basedmethods with are used in order to estimate
posterior model probabilities

p(M |y) ∝
∫

p(y|M, θ)p(θ|M)p(M) dθ

whereM is themodel index and θ aremodel parameters.

Table 1: Simulation results (proportion of false choices) for experi-
ments in selecting 100 pairwise-correlated variables using I-priors
under differing SNR. Our method outperforms methods such as
greedy selection, g-priors, and regularisation (ridge and Lasso).

Signal-to-noise Ratio (SNR)
False choices 90% 75% 50% 25% 10%
0-2 0.93 0.92 0.90 0.79 0.55
3-5 0.07 0.07 0.10 0.20 0.27
>5 0.00 0.01 0.00 0.01 0.18

Conclusions

• I-priors provide simple fitting of various
regression models for prediction and inference.

• The merits of I-priors extend markedly well to the
binary and multinomial response case.

• Evidence suggests an I-prior advantage for linear
variable selection under multicollinearity.
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